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1. Choosing the model

- unfortunately not too much to say beyond the obvious fact that the
model has to be able to capture the real-world meaning of the object of
interest Ψ
- as part of this determine δ, the accuracy that matters

- it is fair to say, however, that after the data x the model is the most
important part of the whole program of statistical reasoning

- also need discussion of how to modify a model when it fails
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2. Choosing the prior

- the "right" way to choose a prior is via elicitation

- this means you use what you know about the true value

- note - there isn�t only one right way to carry out an elicitation
- also presumably you collect enough data so that the prior doesn�t
dominate the inferences (bias calculations)

Example location normal

- x = (x1, . . . , xn)
i .i .d .� N(µ, σ20) with µ 2 R1, σ20 known and π a

N(µ0, τ
2
0) dist.

- specify interval (m1,m2) that contains the true µ with virtual certainty γ
(e.g. γ = 0.99)

- put µ0 = (m1 +m2)/2 and then solve
Φ((m2 � µ0)/τ0)�Φ((m1 � µ0)/τ0) = γ for τ0

- if you take (m1,m2) too short then risk prior-data con�ict and bias
against and if you take it too long then you will need a large sample size
to avoid bias in favor
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Example Fieller�s problem
- mss x̄ � N(µ, σ20/n) ind. of ȳ � N(ν, σ20/m) and ψ = Ψ(µ, ν) = µ/ν

- µ � N(µ0, τ210) ind. of ν � N(ν0, τ220) and want to assess
H0 : Ψ(µ, ν) = ψ0
- you could apply the previous elicitation algorithm to each of µ and ν but
presumably something is known about ψ (else why make inference about
it)

- so perhaps use the previous algorithm to obtain (µ0, τ
2
10), via interval

(m1,m2), and specify interval (r1, r2) that contains the true value of ψ
with virtual certainty (also contains ψ0 say ψ0 = (r1 + r2)/2
- then, provided r1, r2 are of the same sign (say positive) r1 � µ/ν � r2 i¤
µ/r2 � ν � µ/r1 so m1/r2 � ν � m2/r1 with virtual certainty and
determine (ν0, τ220) with ν0 = µ0/ψ0 and τ20 satisfying
Φ((m2/r1 � ν0)/τ20)�Φ((m1/r2 � ν0)/τ20) = γ
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Improper Priors
- sometimes individuals claim complete ignorance about a quantity that
takes values in an in�nite region and so a prior π is selected which
supposedly represents this ignorance

- such priors are often chosen by a default rule and they are improper

- e.g., Je¤reys prior π(θ) ∝ j det(Eθ(
∂2 log fθ(x )

∂θi ∂θj
)j1/2

- when the prior is improper, then π(θ)fθ(x) does not correspond to a
joint probability distribution for (θ, x) even when

R
Θ π(θ)fθ(x) dθ is �nite,

yet when it is �nite, π(θ j x) = π(θ)fθ(x)/
R

Θ π(θ)fθ(x) dθ is called the
posterior of θ

- but in the improper prior case this is not an application of R1 the
conditionality principle, so what "principle" is being applied?

- even when Je¤reys prior is �nite the prior is questionable as a
representative of ignorance, e.g., Bernoulli(θ) then Je¤reys prior is θ �
beta(1/2, 1/2) with in�nite singularities at 0 and 1 and it seems unlikely
that this represents "ignorance"

- empirical Bayes also violates R1 since the prior depends on x
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3. Measuring bias, 4. Data collection and 5. Model
checking

- as already discussed measure biases and use these step to decide on the
data collection to obtain x

- there are many methods for model checking based on x but those based
on the conditional distributions given a mss T (x) or based on an ancillary
statistic U(x) seem the most principled and these can be based on a
p-value as there are no alternatives
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6. Checking for prior-data con�ict

Evans and Moshonov (2006) Checking for prior-data con�ict.
Bayesian Analysis, 1, 4, 893-914.

- for mss T (x) and ancillary compute

MT (mT (t jU(x)) � mT (T (x) jU(x)) jU(x))
and this serves to locate T (x) in its conditional prior distribution so if this
prob. is small there is an indication of a prior-data con�ict
- recall that the distribution of the data for a given value of T (x) does not
involve θ so this can tell us nothing about whether the prior is
contradicted by the data and similarly conditioning on U(x) removes the
variation due to U when making this assessment

Evans and Jang (2011) A limit result for the prior predictive
applied to checking for prior-data con�ict. Statistics and
Probability Letters, 81, 1034-1038.

MT (mT (t jU(x)) � mT (T (x) jU(x)) jU(x))! Π(π(θ) � π(θtrue ))
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- when there is prior-data con�ict there is a lack or robustness to the prior

Al-Labadi and Evans (2017) Optimal robustness results for some
Bayesian procedures and the relationship to prior-data con�ict.
Bayesian Analysis 12, 3, 702-728.

- what to do when there is prior-data con�ict?

Evans and Jang (2011). Weak informativity and the information
in one prior relative to another. Statistical Science, 26, 3,
423-439.

Example - location normal
- T (x) = x̄ j µ � N(µ, σ20/n) and µ � N(µ0, τ20) so
x̄ � N(µ0, τ20 + σ20/n) and note that since x̄ is a complete mss, Basu�s
theorem says it is independent of any ancillary statistic so no need for
conditioning

mT (t) =
�
τ20 + σ20/n

��1/2
ϕ(
�
τ20 + σ20/n

��1/2
(t � µ0))

MT (mT (t) � mT (x̄)) = MT ((t � µ0)
2 � (x̄ � µ0)

2)

= 2[1�Φ(jx̄ � µ0j/
�
τ20 + σ20/n

�1/2
)]! 2[1�Φ(jµtrue � µ0j/τ0)]
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7. Inference

- relative belief inferences to answer E and/or H about Ψ
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Summary

- the central core concept in statistics is the idea that data contains
evidence concerning answers to E and H
- thesis: to build a sound theory of statistical reasoning it is necessary to
give a clear characterization of statistical evidence and how to quantify it

- the prominent, commonly used approaches to statistics fail in this regard

- the approach via relative belief:

1. answers and resolves a variety of paradoxes and doesn�t (seem
to) introduce new ones,
2. is relatively simple,
3. is a whole theory of statistical reasoning where the individual
parts are all inter-related and agrees with basic scienti�c
principles like falsi�ability to support objectivity,
4. uni�es aspects of Bayesian and frequentist thinking as each
plays a key role.

Is it correct?
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